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Abstract 

Modeling the volatility in daily stock prices requires to study the particular error distribution 

that best fits the data, since it is evident that the stock market is now relied upon by 

investment analysts, economists and policy makers to measure changes in the general 

economic activities of a nation and globally. This study, therefore aimed at fitting symmetric 

and asymmetric GARCH models to daily stock prices of selected securities in Nigeria using 

Access and Fidelity Banks daily closing share prices from April 1, 2010 to December 16, 

2016. This study estimates first order symmetric and asymmetric volatility models each in 

Normal, Student’s-t and generalized error distributions (GED) with the view to selecting the 

best forecasting volatility model with the most appropriate error distribution. The results of 

the analysis shows that PARCH (1, 1), EGARCH (1, 1) and TGARCH in that order with GED 

were selected to be the best fitted models based on the Akaike Information Criterion (AIC). 

The out-of-sample forecasting evaluation result adjudged PGARCH (1, 1) with GED as the 

best predictive model based on Mean Absolute Error and Theil Inequality Coefficient and 

EGARCH(1,1) based on root mean square error (RMSE). It is therefore recommended that 

empirical workers should consider alternative error distributions while specifying predictive 

volatility model as less contributing error distributions implies incorrect specification, which 

could lead to loss of efficiency in the model, especially to model the volatility in stock prices.  

 

Keywords: Asymmetric GARCH; Student’s t distribution; Normal distribution; generalized 

error distribution; Stock prices 

 

1. Introduction 

The stock market is the focus of investment analysts, economists and policy makers 

because it may be relied upon to measure changes in general economic activities using the 

stock prices of listed companies of the Nigerian Stock Exchange (NSE). Ogum et al. (1995) 

mentioned that the stock market provides the fulcrum for capital market activities and it is 

often cited as a barometer of business direction. The saving sector needs to employ their 

savings in more beneficial and ambitious projects and the productive sectors always require 

financial sources to assist them to perform more in the economy. Stock market performance 

helps to transfer funds from people who have amassed surplus to those who have a paucity of 

funds (Jayasuriya, 2002). 

mailto:matekum@yahoo.com
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Time series analysis is one of the best methods of analyzing stock market because the 

data are collected on daily basis ordered by time. A time series is a set of data collected at 

equal intervals. In finance, time series data could be data on daily exchange rate, daily shares 

prices, daily shares index and so on. Time series data could be stationary or non-stationary. A 

sequence or series is stationary or strictly stationary if there is no systematic change in its 

mean and variance. This stationarity calls for volatility model. Thus, the volatility of stock 

markets has been the object of numerous developments and applications over the past two 

decades. In this respect, the most widely used class of time series models is certainly that of 

generalized autoregressive conditional heteroscedastic (GARCH) (Rao, 2016). 

 

GARCH models usually indicate a high persistence of the conditional variance. The 

ARCH as well as the GARCH models captures volatility clustering and leptokurtosis. In 

situations where their distributions are symmetric, they fail to model the leverage effect. To 

address this problem, many nonlinear extensions of GARCH have been proposed, such as the 

Exponential GARCH (EGARCH), GJR-GARCH, PGARCH and TGARCH. Thus, the 

estimates of a GARCH model in the persistence parameter may suffer from a substantial 

upward bias. Therefore, models in which the parameters are allowed to change over time may 

be more appropriate for modeling volatility (Berkes et al., 2003).  

 

Dallah and Ade (2010) examined the volatility of daily stock returns of Nigerian 

insurance stocks using twenty six insurance companies’ daily data from December 15, 2000 

to June 9, 2008 as training data set and from June 10, 2008 to September 9, 2008 as out-of-

sample dataset. Their result of ARCH (1), GARCH (1, 1) TARCH (1, 1) and EGARCH (1, 1) 

shows that in model evaluation and out-of-sample forecast of stock price returns, EGARCH 

is more suitable as it performed better than other models.  

 

This study focuses on the behavior of stock returns volatility of Nigeria stock market 

using daily share price data for the period July 2011 to June 2016. It is expected that in a 

volatile stock market, the value of the magnitude of the disturbance terms should be greater at 

certain periods than others. However, this study models stock return using generalized 

autoregressive conditional heteroscedasticity (GARCH) models and it is hoped that the 

findings of this study will be of immense benefit for policy formulation.   

 

In order to achieve the aim of this study, which is modeling of Nigeria stock market 

price volatility, we set the following objectives: 

(i) Estimate the stock price volatility using the generalized autoregressive conditional 

heteroscedasticity (GARCH) models and 

(ii) Selecting the best forecasting volatility model with the most appropriate error 

distribution. 

 

This study is organized into sections. Section one comprises introduction to the study, 

which includes the objectives of the study. Section two explores theoretical review of 

GARCH models and empirical review of related literature. Section three comprises method 

and materials and model specification. Section four consists of data analysis, results and 

discussion of findings and finally section five is where we do the conclusion and 

recommendations. 

 

2. Materials and Methods 

2.1 Data Description 

In this research, we collected secondary data on daily closing price list of Access and 
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Fidelity Banks in Nigeria. The data was collected online from 

www.capitalbancorpng.com/research /pricelist on December 17, 2016 covering April 1, 2010 

to December 16, 2016 spanning 1,693 data point. Trading does not take place on Public 

Holidays at the floor of Nigerian Stock Exchange (NSE), so figures are not available for 

holidays. The data were entered into Microsoft Excel sheet and subsequently transferred to 

Eviews 7 for the data analysis.  

 

2.2 Volatility Models Used 

2.2.1 GARCH Models 

The Generalized autoregressive conditional heteroscedasticity (GARCH) (p,q) model of 

Bollerslev (1986) includes p lags of the conditional variance in the linear ARCH(q) 

conditional variance equation, The basic model of representing non-correlated series with 

excess kurtosis and auto correlated squares, proposed by Engle (1982), is given as 

       (  )                                                                                       ( ) 

Such that t = ztt 

Wherezt is an i.i.d process with mean zero and variance 1 and σt is the volatility that evolves 

over time. Equation (1) is the mean equation, which also applies to other GARCH family 

model. Et-1(.) is expectation conditional on information available at time t-1,   is error 

generated from the mean equation at time t. The volatility   
  in the basic ARCH (q) model is 

defined as  

  
      ∑      

 

 

   

                                                         ( ) 

Where    ;                    and      .    

In practical application of ARCH (q) model, the decay rate is usually more rapid than 

what actually applies to financial time series data. To account for this, the order of the ARCH 

must be at maximum, a process that is strenuous and more cumbersome. As a result, 

Bollerslev (1986) proposed the GARCH (p, q) model given as 

  
      ∑      

 

 

   

 ∑      
 

 

   

                                                      ( ) 

Wherep is the order of the GARCH terms, 2
 and qare the order of the ARCH terms, 2

, 

where        ;                             and       , and   
  is the 

conditional variance and   
 , disturbance term.  

Conditions on the parameters to ensure that the GARCH(p,q) conditional variance is 

always positive are given in Nelson and Cao (1992).  The GARCH(p,q) model may 

alternative be represented as an ARMA(max{p,q},p) model for the squared innovation: 

  
      ∑ (     )    

 

    (   )

   

 ∑      

 

   

                                                      ( ) 

where   =   
    

 , so that by definition Et-i(vt) = 0.  The relatively simple GARCH(1,1) 

model, is simply represented as 

  
          

       
                                                               ( ) 

The three parameters (c > 0,   0and  0) and   +  < 1 to achieve stationarity.    

The GARCH(1,1) model often provides a good fit in empirical applications. This 

particular parameterization was also proposed independently by Taylor (1986).  The 

GARCH(1,1) model is well-defined and the conditional variance positive almost surely 

provided that c > 0,   0and  0.  The GARCH(1,1) model may alternatively be express as 

an ARCH() model, 

http://www.capitalbancorpng.com/research%20/pricelist
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provided that  < 1.  If    +  < 1the model is covariance stationary and the unconditional 

variance equals 2
 = c(1 - - ).  Multi-period conditional variance forecasts from the 

GARCH(1,1) model may readily be calculated as: 

      
     (   )   (    

    )                                                  ( ) 

where h> 2 denotes the horizon of the forecast. 

 

2.2.2 The Threshold GARCH (TGARCH) Model 

The TGARCH(p,q) model proposed by Zakoian (1994) extends the TS-GARCH(p,q) 

model to allow the conditional standard deviation to depend upon the sign of the lagged 

innovations.  The generalized specification for the conditional variance using TGARCH (p, 

q) is given as 

  
      ∑      

 

 

   

 ∑          
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                                       ( ) 

Where       , if     
     and 0 otherwise. 

In this model, good news implies that     
    and bad news implies that     

    and these 

two shocks of equal size have differential effects on the conditional variance. Good news has 

an impact of    and bad news has an impact of     . Bad news increases volatility 

when    , which implies the existence of leverage effect in the i-th order and when      

the news impact is asymmetric. However, the first order representation of TGARCH is 

TGARCH(1, 1). In particular, it may be expressed as:  

  
           

           
       

                                                       ( ) 
Glosten, Jagannathan and Runkle (1993). 

 

2.2.3 The Power GARCH (PGARCH) Model 

Ding et al (1993) expressed conditional variance using PGARCH (p, d, q) as 

  
      ∑  [              ]

 

 

   

 ∑      
 

 

   

                          (  ) 

Here,     and 
+
,      establishes the existence of leverage effects. If d is set at 2, the 

PGARCH (p, q) replicate a GARCH (p, q) with a leverage effect. If d is set at 1, the standard 

deviation is modeled. The first order of equation (7) is PGARCH (1, d, 1), expressed as: 

  
       [             ]

       
                           (  ) 

 

2.2.4The Exponential GARCH (EGARCH) Model 

The standard GARCH model has a number of potential pitfalls. Such models cannot 

take into consideration asymmetry, leverage effects, and coefficient restrictions. Nelson 

(1991) proposed the exponential GARCH or EGARCH model to resolve these limitations. 

Unlike the standard GARCH model, the EGARCH model can capture size effects as well as 

sign effects of shocks. The variance equation of EGARCH model is given as  

  (  
 )      ∑{  |

    
 

    
|    (

    
 

    
)}

 

   

 ∑    (    
 )

 

   

                          (  ) 

      and       implies good news and bad news and their total effects are (  
  )⌈    ⌉ and (    )⌈    ⌉ respectively. When    , the expectation is that bad news 

would have higher impact on volatility. The EGARCH model achieves covariance 
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stationarity when ∑   
 
     . Besides, this model captures the leverage effect, which 

exhibits the negative association between lagged stock returns and contemporaneous 

volatility. The presence of leverage effects can be tested by the hypothesis that δ< 0. If δ ≠ 0 

then the impact is asymmetric. The simplest form is the EGARCH (1,1) model, which is 

specified as 

  (  
 )       |

    
 

    
|   (

    
 

    
)     (    

 )                          (  ) 

 

2.3 Error Distributions Hypothesis 

The probability distribution of stock prices often exhibits fatter tails than the standard 

normal distribution. The existence of heavy-tailedness is probably due to a volatility 

clustering in stock markets. In addition, another source for heavy-tailedness seems to be the 

sudden changes in stock returns. An excess kurtosis also might be originated from fat 

tailedness. Moreover, in practice, the returns are typically negatively skewed. In order to 

capture this phenomenon (e.g., heavy-tailedness), the t and GED distributions are also 

considered in our analysis.  

To further prove that modeling of the return series is inefficient with a Gaussian process 

for high frequency financial time series, equations 5, 7, 9 and 13 are estimated with a normal 

distribution by maximizing the likelihood function 

 (  )   
 

 
∑(         

  
  

 

  
 )

 

   

                                                    (  ) 

where  
  is specified in each of the GARCH models. 

The assumption that GARCH models follow GED
2
 tends to account for the kurtosis in 

returns, which are not adequately captured with normality assumption. As in (3.9) above, the 

volatility models are estimated with GED by maximizing the likelihood function below: 
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wherev is the shape parameter which accounts for the skewness of the returns and   v> 0. The 

higher the value of v, the greater the weight of tail. GED reverts to normal distribution if v = 

0.In the case of t-distribution, the volatility models considered are estimated to maximize the 

likelihood function of a Student’s t distribution:  

 (  )   
 

 
  (
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 [(   )  ] 
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(   )
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(     
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 (   )

)         (  ) 

Here, r is the degree of freedom and controls the tail behavior, r > 2.  

 

2.4 Model Selection/Forecasting Evaluation 

The first order volatility models in equations 4, 6, 8 and 10 are estimated by allowing    

in (20) for each of the variance equation to follow normal, student’s t and generalized error 

distributions. The value of the positive exponent in equation 13 is set at 1, 2 and 4. This 

process generates eighteen volatility models. Model selection is done using AIC, and the 

model with the least AIC value across the error distributions is adjudged the best fitted. This 

selection produces the best-fitted conditional variance models for stock prices. 

 

The diagnostic test for standardized residuals of the stock returns in each of the best-

fitted volatility models is conducted. The tests for remaining ARCH effect and serial 

correlation using ARCH-LM test and Q-Statistics (Correlogram of Residuals), respectively 

are conducted. The presence of ARCH effect and serial correlation in the residual of the mean 
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equation (standardized residual) reduces the efficiency of the conditional variance model. 

Hence, the expectation is that the two null hypotheses that “there is no ARCH effect” and 

“there is no serial correlation” must not be rejected at 5% significance level. QQ-plot is used 

to check the normality of the standardized residuals. For a Gaussian process, the points in the 

QQ-plots will lie on a straight line.   

 

On the predictive ability of volatility models, Clement (2005) proposes that out-of-

sample forecasting ability remains the criterion for selecting the best predictive model. 

Therefore, two out-of-sample model selection criteria (Root Mean Square Error (RMSE) and 

Theil Inequality Coefficient (TIC)) are applied to evaluate the predictive ability of the best 

competing models. If   
  and  ̂ 

  represent the actual and forecasted volatility of stock returns 

at time t, then  

     √ ∑ ( ̂ 
    

 )   

   

     

                                                           (  ) 

and 

    

√∑ ( ̂ 
    

 )      
     

√∑ ( ̂ 
 )      

     √∑ (  
 )      

     

                                      (  ) 

The smaller the RMSE and TIC, the higher the forecasting ability of the model. 

 

3. Result and Discussion of Findings 

3.1Exploratory Data Analysis (EDA) 

In this section, data are presented in tables and charts and the data presented are then 

analyzed and the results of the analysis discussed. The descriptive analysis of the data shown 

in Table 1 reveals that the daily average shares prices of Access and Fidelity Banks are N7.61 

and N2.02 respectively over the period under review, with standard deviations 2.15 and 0.68 

respectively. The Fidelity Bank dataset is more skewed and peaked than that of Access Bank 

but the volatility of Access Bank is more than that of Fidelity Bank. This shows that Fidelity 

Bank shares price is more stable than that of Access Bank. The shares price of Access Bank 

fluctuates between N3.59 minimum and N12.39 maximum under the period in review, while 

that of Fidelity Bank fluctuates between N0.78 minimum and N3.50 maximum under the 

same period. 

 

The time plot depicted in Figure 1 shows that there is a high volatility in Access Bank 

shares price as a result of the high spike in the movement compared to that of Fidelity Bank. 

However, both shares prices seem to be moving in a general direction downward, which is 

not obvious to depict from the raw data except from the time plot. Figure 2 and Figure 3 

shows the histogram of the Access Bank data and that of Fidelity Bank, which are bimodal in 

shape. 

 

Table 2 shows the linear deterministic test for unrestricted cointegration rank test 

between daily shares prices of Access and Fidelity Banks with Lags interval (in first 

differences) 1 to 4. The trace and eigen value tests are significant at 5% level. The trace test is 

significant for none at 5% but not significant for at most 1. Also, the maximum eigen value 

test is significant for none but not significant for at most 1 at 5% level of significance. The 

reported log likelihood is 2859.462.  
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Table 1: Descriptive Statistics 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Time Plot of Access and Fidelity Bank 
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Statistic ACCESS FIDELITY 

Mean  7.613680  2.025145 

Median  7.730000  2.000000 

Maximum  12.39000  3.500000 

Minimum  3.590000  0.780000 

Std. Dev.  2.150051  0.684891 

Skewness  0.021149  0.157003 

Kurtosis  1.795659  1.869386 

Jarque-Bera  102.4425  97.12801 

Probability  0.000000  0.000000 

Observations  1,693  1,693 
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Figure 2: Access Bank spread   

 

Table 2: Linear Deterministic Test for Unrestricted Cointegration Rank Test  

 None At most 1 

Test Eigenvalue 
Test 

Statistic 

Critical 

Value 
P-vale Eigenvalue 

Test 

Statistic 

Critical 

Value 
P-vale 

Trace 0.015715 29.47487 15.49471 0.0002 0.001620 2.737105 3.841466 0.0980 

Maximum 

Eigenvalue 
0.015715 26.73777 14.26460 0.0003 0.001620 2.737105 3.841466 0.0980 

Log likelihood = 2859.462 

Adjustment cointegration coefficients (standard error in parentheses) 

D(ACCESS) = -0.002235 (0.00391)  D(FIDELITY) =  0.005920 (0.00117) 

 

Result of Table 3 shows that Fidelity Bank daily shares price does not granger cause 

Access Bank daily shares price at 5% level of significance while on the other hand, Access 

Bank daily shares price significantly granger cause Fidelity Bank daily shares price at 5% 

level of significance. 

 

Table 3: Pairwise Granger Causality Tests at Lag 5  

Null Hypothesis: F-Statistic P-value  

FIDELITY does not Granger Cause ACCESS 1.16589 0.32370 

ACCESS does not Granger Cause FIDELITY 5.30493 0.00008 

 

3.2 Model Selection 

The model selection is based on the best AIC to the estimation of GARCH family 

models with the three error distributions to determine the best volatility-forecasting model.# 

 

Table 4 presents the results of the nine volatility models for Access Bank daily shares 

price. Some parameter estimates are significant at 5% while some are not. Among the nine 

volatility models TGARCH(1,1) and EGARCH(1,1) for GED have all their parameters 

significant. So, TGARCH(1,1) with GED and followed by EGARCH(1,1) with GED will be 

selected as the best volatility models based on the P-value. However, judging by the least 

AIC, we selected PGARCH(1,1) with GED followed by TGARCH(1,1) with GED. We can 

conclude for Access Bank daily shares price, generalized error distribution (GED) is the best 

error distribution model, better than normal and student’s t distributions.  
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Table 5 presents the results of the nine volatility models for Fidelity Bank daily shares 

price. The parameter estimates are significant at 5% except for  1for all normal and student’s 

t error distribution models. Among the nine volatility models for Fidelity Bank daily shares 

price, TGARCH(1,1), EGARCH(1,1) and PGARCH(1,1) all in GED have all their 

parameters significant and are selected as the best volatility models based on the P-value. 

Also, judging by the least AIC, we selected EGARCH(1,1) in GED as the best volatility 

model for Fidelity Bank daily shares price. We now conclude for Fidelity Bank daily shares 

price that generalized error distribution (GED) is the best error distribution model, better than 

normal and student’s t distributions.  
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Table 4: Access Bank Estimation Results of First Order GARCH Family Models  

 Normal Student’s t GED  

Model Parameter Estimate P-value AIC Estimate P-value AIC Estimate P-value AIC Best 

TGARCH(1,

1) 
 0 0.0360 0.0001 

3.6702 

0.0360 0.0001 

3.6714 

0.1452 0.0000 

2.9184 GED 
 1 0.9777 0.0000 0.9780 0.0000 0.5266 0.0000 

 1 -0.0206 0.9466 -0.0208 0.9463 -0.0955 0.0000 

 1 0.0379 0.6353 0.0380 0.6351 0.0195 0.0821 

EGARCH(1,

1) 
 0 -1.3881 0.0000 

3.6951 

-0.5155 0.0023 

3.9602 

-1.4784 0.0000 

2.9814 GED 
 1 1.5680 0.0000 1.6244 0.0000 1.2873 0.0000 

 1 -0.0468 0.7135 -0.1017 0.5263 0.0575 0.0002 

 1 0.8542 0.0000 0.1389 0.0287 0.6371 0.0000 

PGARCH(1,

1) 
 0 0.1010 0.0002 

3.7164 

0.1827 0.0000 

3.7614 

0.2324 0.0000 

2.8547 GED 
 1 0.9014 0.0000 1.0919 0.0000 0.5990 0.0000 

 1 -0.0017 0.9851 -0.0027 0.9798 -0.0272 0.0008 

 1 0.0461 0.6382 -0.1925 0.0768 -0.0016 0.9331 

 

Table 5: Fidelity Bank Estimation Results of First Order GARCH Family Models  
 Normal Student’s t GED  

Model Parameter Estimate P-value AIC Estimate P-value AIC Estimate P-value AIC Best 

TGARCH(1,1)  0 0.0005 0.0001 

1.2177 

0.0005 0.0001 

1.2202 

0.0116 0.0000 

0.5871 GED 
 1 0.7847 0.0000 0.7868 0.0000 0.6335 0.0000 

 1 0.0132 0.9491 0.0133 0.9490 -0.1012 0.0000 

 1 0.2288 0.0001 0.2291 0.0001 -0.1665 0.0000 

EGARCH(1,1)  0 -1.1536 0.0000 

1.2354 

-1.1536 0.0000 

1.2392 

-1.5307 0.0000 

0.5802 GED 
 1 1.0994 0.0000 1.1030 0.0000 0.8933 0.0000 

 1 -0.0090 0.9050 -0.0092 0.9040 0.0439 0.0000 

 1 0.9428 0.0000 0.9430 0.0000 0.7808 0.0000 

PGARCH(1,1)  0 0.0119 0.0000 

1.2197 

0.0102 0.0006 

1.2406 

0.1051 0.0000 

0.6028 GED 
 1 0.7258 0.0000 0.5360 0.0000 0.8001 0.0000 

 1 0.0040 0.9575 0.0052 0.9456 -0.0423 0.0000 

 1 0.2598 0.0000 0.4519 0.0000 -0.3381 0.0000 



 International Journal of Economics and Financial Management Vol. 3 No. 1 2018 ISSN: 2545 - 5966   

www.iiardpub.org 

 

 
 
 

IIARD – International Institute of Academic Research and Development 

 
Page 40 

There are eighteen volatility models estimated, nine for Access Bank while the other 

nine are for Fidelity Bank. From the nine models for Access Bank, TGARCH (1, 1), 

EGARCH (1, 1) and PGARCH (1, 1) in GED were selected for forecasting. This result is 

presented in table 4.8 alongside the percentage improvement of the three volatility models in 

normal (Gaussian) distribution by student’s t and generalized error distributions (Non-

Gaussian).  

 

Table 6 shows that the Student’s t error distribution does not improve the fitness of first 

order TGARCH, EGARCH and PGARCH models with normal error assumption, but the 

generalized error assumption improved the adequacy of the models with Gaussian processes 

by 20.51, 24.72 and 24.11 per cent.  

 

Therefore, based on the specification of these volatility models, Gaussian process and 

student’s t process are not adequate to capture the variability in Access Bank daily shares 

prices. Their application could lead to misspecification as other non-Gaussian processes such 

as GED could contribute more to the fitness of these models than the Gaussian processes and 

student’s t process. 

 

Table 6: Access Bank Model Fit and Improvement of Non-Gaussian Process over 

Gaussian Process   

First Order 

GARCH 

Models 

Akaike Information Criterion (AIC) Percentage improvement 

of Gaussian process by 

non-Gaussian process 

Normal 

Distribution 

Student’s t 

Distribution 

Generalized 

Error 

Distribution 

Student’s t 

Distribution 

Generalized 

Error 

Distribution 

TGARCH(1,1) 3.6702 3.6714 2.9184 -0.03% 20.48% 

EGARCH(1,1) 3.6951 3.9602 2.9814 -7.17% 19.31% 

PGARCH(1,1) 3.7164 3.7614 2.8547 -1.21% 23.19% 

 

Table 7: Fidelity Bank Model Fit and Improvement of Non-Gaussian Process over 

Gaussian Process   

First Order 

GARCH 

Models 

Akaike Information Criterion (AIC) Percentage improvement 

of Gaussian process by 

non-Gaussian process 

Normal 

Distribution 

Student’s t 

Distribution 

Generalized 

Error 

Distribution 

Student’s t 

Distribution 

Generalized 

Error 

Distribution 

TGARCH(1,1) 1.2177 1.2202 0.5871 -0.21% 51.79% 

EGARCH(1,1) 1.2354 1.2392 0.5802 -0.31% 53.04% 

PGARCH(1,1) 1.2197 1.2406 0.6028 -1.71% 50.58% 

 

From the nine models for Fidelity Bank, TGARCH (1, 1), EGARCH (1, 1) and 

PGARCH (1, 1) in GED were selected for forecasting. This result is presented in table 7 

alongside the percentage improvement of the three volatility models in normal (Gaussian) 

distribution by student’s t and generalized error distributions (Non-Gaussian). The table 

shows that the Student’s t error distribution does not improve the fitness of first order 

TGARCH, EGARCH and PGARCH models with normal error assumption, but the 

generalized error assumption improved the adequacy of the models with Gaussian processes 
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by 51.79, 53.04 and 50.58 per cent.  

 

Therefore, based on the specification of these volatility models, Gaussian process and 

student’s t process are not adequate to capture the variability in Fidelity Bank daily shares 

prices. Their application could lead to misspecification as other non-Gaussian processes such 

as GED could contribute more to the fitness of these models than the Gaussian processes and 

student’s t process. 

 

3.3 Forecast Performance 

The result of 30 trading days out of sample forecast of Access Bank daily shares price 

used in determining the predictive abilities of the three models using the loss function are 

presented in Table 8.  

 

On the basis of RMSE, EGARCH (1, 1) in GED model is selected as it yielded the least 

forecast error. While for MAE and Theil coefficient PGARCH (1,1) in GED is selected as it 

yield the least forecast error. Based on these three criteria, PGARCH(1,1) is selected as the 

best forecasting volatility model for Access Bank daily shares price, followed by EGARCH 

and the least is TGARCH. It is worthy to note that the closeness of the forecast evaluation 

statistics in terms of RMSE and Theil coefficient justifies the adequacy of the conditional 

volatility models considered.  

 

Table 8: Access Bank Loss Function for Generalized Error Distribution 

LOSS FUNCTION (LF) TGARCH EGARCH PGARCH MIN LF 

Root Mean Square Error 2.25072 2.15628 2.18987 EGARCH 

Mean Absolute Error (MAE) 1.92171 1.90098 1.89594 PGARCH 

THEIL Coefficient 0.13900 0.14045 0.13735 PGARCH 

 

The result of 30 trading days out of sample forecast of Fidelity Bank daily shares price 

used in determining the predictive abilities of the three models using the loss function are 

presented in Table 9. On the basis of RMSE, EGARCH (1, 1) in GED model is selected as it 

yielded the least forecast error. While for MAE and Theil coefficient PGARCH (1,1) in GED 

is selected as it yield the least forecast error. Based on these three criteria, PGARCH(1,1) is 

selected as the best forecasting volatility model for Fidelity Bank daily shares price, followed 

by EGARCH and the least is TGARCH.  

 

It is worthy to note that the closeness of the forecast evaluation statistics in terms of 

RMSE and Theil coefficient justifies the adequacy of the conditional volatility models 

considered. 

 

Table 9: Fidelity Bank Loss Function for Generalized Error Distribution 

LOSS FUNCTION (LF) TGARC

H 

EGARCH PGARCH MIN LF 

Root Mean Square Error 0.68624 0.68553 0.68826 EGARCH 

Mean Absolute Error (MAE) 0.59473 0.59153 0.59334 PGARCH 

THEIL Coefficient 0.16304 0.16603 0.16816 PGARCH 

 

4. Conclusion and Recommendations 

To estimate the stock price volatility using the generalized autoregressive conditional 

heteroscadasticity (GARCH) using the daily closing shares prices of Access Bank and 

Fidelity Banks to model the volatility of stock returns, PARCH (1, 1), EGARCH (1, 1) and 
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TGARCH in that order with GED were selected to be the best fitted models based on their 

Akaike Information Criterion (AIC). Thus, generalized error distribution (GED) improved the 

fitness of first order TGARCH, EGARCH and PGARCH models with normal error 

assumption for the two selected banks. This corroborates previous studies that GED process 

is a better volatility model than Gaussian process, due to the asymmetricity of the data. In 

order to selecting the best forecasting volatility model with the most appropriate error 

distribution, the out-of-sample forecasting evaluation result adjudged PGARCH (1, 1) with 

generalized error distribution as the best predictive model based on Mean Absolute Error and 

Theil Inequality Coefficient and EGARCH(1,1) based on root mean square error.  

 

Given the level of risk associated in investment in stocks, investors, financial analyst 

and empirical workers should consider alternative error distributions while specifying 

predictive volatility model as less contributing error distributions implies incorrect 

specification, which could lead to loss of efficiency in the model. We recommend that 

GARCH models with generalized error distributions should be used to model the volatility in 

stock prices in Nigeria market because they are better than both Normal and student’s t error 

distributions. However, other error distributions can be exploited in subsequent work and 

results compared with that of generalized error distribution. We also recommend that 

empirical works should consider alternative error distributions with a view to achieving a 

robust volatility forecasting model that could guarantee a sound policy decisions.  
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